Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Titan (prvek)
 
Titan
  3d2 4s2
46 Ti
22
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Obecné
Název, značka, číslo Titan, Ti, 22
Cizojazyčné názvy lat. Titanium
Skupina, perioda, blok 4. skupina, 4. perioda, blok d
Chemická skupina Přechodné kovy
Koncentrace v zemské kůře 5 700 až 6 300 ppm
Koncentrace v mořské vodě 0,001 mg/l
Vzhled Šedý až stříbřitě bílý, lehký kov
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 47,867
Atomový poloměr 147 pm
Kovalentní poloměr 160 pm
Iontový poloměr 68 pm
Elektronová konfigurace 3d2 4s2
Oxidační čísla I, II, III, IV
Elektronegativita (Paulingova stupnice) 1,54
Ionizační energie
První 658,8 kJ/mol
Druhá 1309,8 kJ/mol
Třetí 2652,5 kJ/mol
Čtvrtá 4324 kJ/mol
Látkové vlastnosti
Krystalografická soustava Hexagonální
Molární objem 10,64×10−6 m3/mol
Mechanické vlastnosti
Hustota 4,506 g/cm3
Skupenství Pevné
Tvrdost 6,0
Tlak syté páry 100 Pa při 2403K
Rychlost zvuku 5290 m/s
Termické vlastnosti
Tepelná vodivost 21,9 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání 1667,85 °C (1 941 K)
Teplota varu 3286,85 °C (3 560 K)
Skupenské teplo tání 14,15 kJ/mol
Skupenské teplo varu 425 kJ/mol
Měrná tepelná kapacita 523 Jkg−1K−1
Elektromagnetické vlastnosti
Elektrická vodivost 2,38×106 S/m
Měrný elektrický odpor 420 nΩ·m
Standardní elektrodový potenciál −1,63 V
Magnetické chování Paramagnetický
Bezpečnost
GHS02 – hořlavé látky
GHS02
GHS07 – dráždivé látky
GHS07
[1]
Nebezpečí[1]
R-věty R17, R36/37/38
S-věty S26
Izotopy
I V (%) S T1/2 Z E (MeV) P
44Ti umělý 59,1 roků ε 0,267 4 44Sc

γ 0,07 44Sc
46Ti 8,0% je stabilní s 24 neutrony
47Ti 7,3% je stabilní s 25 neutrony
48Ti 73,8% je stabilní s 26 neutrony
49Ti 5,5% je stabilní s 27 neutrony
50Ti 5,4% je stabilní s 28 neutrony
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Skandium Ti Vanad

Zr

Titan (chemická značka Ti, latinsky Titanium) je šedý až stříbřitě bílý, lehký kov, poměrně hojně zastoupený v zemské kůře. V přírodě se vyskytuje pouze jako oxid, který lze redukovat a získat tak lesklý přechodný kov stříbrné barvy, nízké hustoty a vysoké pevnosti, odolný proti korozi v mořské vodě, lučavce královské a chlóru.

Titan byl objeven anglickým chemikem Williamem Gregorem v roce 1791 a pojmenován Martinem Heinrichem Klaprothem podle Titánů z řecké mytologie. Prvek se vyskytuje v řadě minerálů, především v rutilu a ilmenitu, které jsou široce rozšířeny v zemské kůře a litosféře; vyskytuje se téměř ve všech živých organismech a také ve vodních plochách, horninách a půdě.[2] Kov se získává z hlavních minerálních rud Krollovým a Hunterovým procesem.[3] Nejběžnější sloučenina, oxid titaničitý, je oblíbeným fotokatalyzátorem a používá se při výrobě bílých pigmentů;[4] mezi další sloučeniny patří chlorid titaničitý (TiCl4), součást kouřových clon a katalyzátorů, a chlorid titanitý (TiCl3), který se používá jako katalyzátor při výrobě polypropylenu.[2]

Z titanu lze získat slitiny železa, hliníku, vanadu a molybdenu, z nichž se vyrábí pevné a lehké slitiny pro letectví (proudové motory, rakety a kosmické lodě), vojenství, průmyslové procesy (chemický a petrochemický průmysl, odsolovací zařízení, celulóza a papír), automobilový průmysl, zemědělství, lékařské protézy, ortopedické implantáty, zubní a endodontické nástroje a pilníky, zubní implantáty, sportovní potřeby, šperky, mobilní telefony a pro další využití.[2]

Dvěma nejužitečnějšími vlastnostmi tohoto kovu jsou odolnost proti korozi a poměr pevnosti k hustotě, který je nejvyšší ze všech kovů.[5] V nelegovaném stavu je titan stejně pevný jako některé oceli, ale má menší hustotu.[6] Existují dvě alotropické formy[7] a pět přirozeně se vyskytujících izotopů tohoto prvku, 46Ti až 50Ti, přičemž 48Ti je nejrozšířenější (73,8 %).[8]

Objev prvku

Titan byl objeven roku 1791 anglickým chemikem Williamem Gregorem v minerálu ilmenitu a poprvé pojmenován Martinem H. Klaprothem roku 1795. Izolován byl až v roce 1910 Matthew Hunterem zahříváním chloridu titaničitého TiCl4 s kovovým sodíkem v ocelové tlakové nádobě, tento postup byl pojmenován Hunterův proces.

Základní fyzikálně-chemické vlastnosti

Oxid titaničitý

Titan je šedý až stříbřitě bílý, lehký a tvrdý kov. Je dobrým vodičem tepla i elektřiny. Vyznačuje se mimořádnou chemickou stálostí – je zcela netečný k působení vody a atmosférických plynů a odolává působení většiny běžných minerálních kyselin i roztoků alkalických hydroxidů. Zvolna se rozpouští v horké kyselině chlorovodíkové, naopak kyselina dusičná jeho povrch pasivuje. Pro jeho rozpouštění je nejúčinnější kyselina fluorovodíková nebo její směsi s jinými minerálními kyselinami.

Za zvýšených teplot však titan přímo reaguje s většinou nekovů, například s vodíkem, kyslíkem, dusíkem, uhlíkem, borem, křemíkem, sírou a halogeny.

Ve sloučeninách se vyskytuje v mocenství TiIII a TiIV. Sloučeniny čtyřmocného titanu jsou neomezeně stálé, sloučeniny TiIII jsou silnými redukčními činidly a působením vzdušného O2 rychle přecházejí na TiIV.

Při teplotách pod 0,39 K se stává supravodičem I. typu.

Výskyt a výroba

Titan je sedmým nejrozšířenějším kovem v zemské kůře, jeho obsah je odhadován na 5,7 – 6,3 g/kg. V mořské vodě je díky své chemické stálosti přítomen pouze v koncentraci 0,001 mg/l. Ve vesmíru připadá na jeden atom titanu 1 milion atomů vodíku.

V malém množství je titan obsažen ve většině minerálů a mezi jeho nejvýznamnější rudy patří ilmenit – (FeTiO3 oxid železnato-titaničitý) a rutil (TiO2oxid titaničitý). Významné zásoby těchto minerálů se nacházejí v Austrálii, Severní Americe, Skandinávii a Malajsii. Významně je titan zastoupen i na měsíčním povrchu – horniny, které získala mise Apollo 17 obsahují přibližně 12 % TiO2.

Přes své vysoké zastoupení v zemské kůře byl čistý kovový titan po dlouhou dobu velmi vzácným a drahým materiálem. Důvodem je skutečnost, že běžné hutní metody, které se využívají k výrobě jiných kovů, jsou v případě titanu neúčinné díky ochotě titanu reagovat za zvýšené teploty s kyslíkem, vodíkem, uhlíkem a dusíkem.

V současné době se při průmyslové výrobě titanu používá především tzv. Krollův proces. Přitom se nejprve pyrolýzou ilmenitu nebo rutilu s uhlíkem a chlorem získává chlorid titaničitý TiCl4. Po přečištění se jeho páry redukují hořčíkem v inertní argonové atmosféře při teplotě kolem 800 °C.

TiCl4 + 2 Mg → Ti + 2 MgCl2

Titan vzniklý touto reakcí je tuhá, pórovitá látka, která se po odstranění chloridu hořečnatého a nezreagovaného hořčíku dále čistí.

Použití

Titan se používá v oceli jako legující prvek (ferotitan) ke zmenšení velikosti zrn a jako deoxidant a v nerezové oceli ke snížení obsahu uhlíku.[2] Titan se často leguje s hliníkem (ke zjemnění velikosti zrn), vanadem, mědí (ke zpevnění), železem, manganem, molybdenem a dalšími kovy.[9] Výrobky z titanové slitiny (plechy, desky, tyče, dráty, výkovky, odlitky) nacházejí uplatnění v průmyslu, letectví, zábavním průmyslu a na rozvíjejících se trzích. Práškový titan se používá v pyrotechnice jako zdroj jasně hořících částic.[10]

Kosmonautika, letectví, moře

Již od počátku průmyslové výroby kovového titanu spočívalo těžiště jeho využití v kosmických technologiích a speciálních aplikacích leteckého průmyslu. Titan a jeho slitiny jsou proto základním materiálem při výrobě skeletů nebo povrchových ochranných štítů kosmických objektů (družice, vesmírné sondy a vesmírné stanice). V leteckém průmyslu nacházejí využití při výrobě zvláště namáhaných součástí letadel, tedy především při konstrukci vojenských stíhacích letounů a dnes i při konstrukci komerčních dopravních letounů.

Titan je stále častěji používán v zařízeních, která dlouhodobě pracují ve styku s mořskou vodou. Mohou to být součásti lodí nebo ponorek (lodní šrouby), ale i komponenty průmyslových celků, sloužících k odsolování mořské vody.

Piercing z titanu je vhodné použít zejména do čerstvých nezahojených vpichů a to především v obočí a pupíku, které jsou náchylné na takzvané „vyrůstání piercingu“, kdy organismus kov nepřijme a tělo jej vytlačí ven, což titan díky své netečnosti (biokompatibilitě) může do značné míry eliminovat.

Díky své vysoké chemické netečnosti se titan v okolním prostředí nevyskytuje v takové formě, která by mohla být metabolizována živými organizmy. Není proto známo žádné zapojení titanu do enzymatických reakcí nebo jejich jiné biologické uplatnění.

Naopak vysoká odolnost titanu je využívána při výrobě některých chirurgických nástrojů a v současné době jsou módní piercingové ozdoby pokryté titanem pro jejich zdravotní nezávadnost a současně žádaný vzhled. Zdroj:
>Text je dostupný pod licencí Creative Commons Uveďte autora – Zachovejte licenci, případně za dalších podmínek. Podrobnosti naleznete na stránce Podmínky užití.



čítajte viac o Titan_(prvek)

Slou%C4%8Deniny_titanu .
čítajte viac na tomto odkaze: Titan (prvek)

.

Hladanie1.................................

Titan (prvek)
Hunterův proces
Izotopy titanu
Krollův proces
Matthew Hunter
Updating...x




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.