Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Elektromagnetické vlny
Elektromagnetické vlnění

Elektromagnetické vlnění (viz též elektromagnetické záření) je děj, při němž se prostorem šíří příčné vlnění elektrického a magnetického pole. Existenci těchto vln předpověděl v roce 1832 anglický fyzik Michael Faraday a skotský fyzik James Clerk Maxwell je v roce 1865 teoreticky dokázal popsat pomocí svých matematicko-fyzikálních rovnic – nyní známých jako Maxwellovy rovnice. Prakticky je dokázal až v roce 1887 německý fyzik Heinrich Hertz.

Využití

Prvním využitím uměle vytvořených elektromagnetických vln byl přenos informace (bezdrátový telegraf). Pomocí elektromagnetických vln se například přenáší televizní a rozhlasové vysílání, komunikuje mobilními telefony, ovládají například hračky pomocí dálkového ovládání, elektronika (pomocí ovladače), ohřívá strava (mikrovlnná trouba), zjišťuje přítomnost a pohyb předmětů (radary).

Mezi elektromagnetické vlny patří i světlo.

Zdroje

Zdrojem elektromagnetických vln je náboj, který se pohybuje zrychleně. Může to být například elektrická jiskra – tedy i blesk.

Veličiny popisující vlnu

K popisu elektromagnetické vlny se používají veličiny:

a pokud se vlna šíří částečně vodivým prostředím, pak také:

Vlastnosti prostředí

Vlastnosti prostředí, které ovlivňují šíření elektromagnetické vlny, jsou permitivita, permeabilita a konduktivita. V tomto hesle se dále popisuje pouze (zjednodušeným, ale častým) případ šíření vlny homogenním lineárním[pozn. 1] izotropním stacionárním[pozn. 2] prostředím.

Permitivita

Permitivita je fyzikální veličina popisující vztah mezi vektory intenzity elektrického pole a elektrické indukce v materiálu nebo vakuu. Značí se písmenem , v lineárním homogenním izotropním prostředí platí

Permeabilita

Permeabilita je fyzikální veličina popisující vztah mezi vektory intenzity magnetického pole a magnetické indukce. Značí se písmenem , v lineárním homogenním izotropním prostředí platí

Konduktivita

fyz.vel., popisující vztah mezi vektory intenzity elektrického pole a proudové hustoty. Značí se písmenem , v lineárním homogenním izotropním prostředí platí

Vlnová rovnice

Maxwellových rovnic lze odvodit obecný tvar vlnové rovnice (rovnice popisující časový průběh stavu elektromagnetické vlny)

dále pro lineární, homogenní, stacionární a izotropní prostředí lze také odvodit telegrafní rovnici, která má mimo oblast zdrojů pole tvar

kde je Laplaceův operátor. Tento zápis je odvozen pro oblast, v níž neleží zdroje elektromagnetické vlny – popisuje tedy její šíření, nikoli však vznik.

Rovnice má naprosto stejný tvar pro kteroukoli z veličin .

Matematický popis pro harmonický časový průběh veličin

Pokud mají veličiny pole harmonický časový průběh, lze časové derivace vyjádřit pomocí úhlové frekvence , takže vlnová rovnice pak přejde na tvar

kde je (komplexní) konstanta šíření, permeabilita, permitivita a konduktivita prostředí a je imaginární jednotka.

Rovinná vlna

Vlnová rovnice je parciální diferenciální rovnice druhého řádu. Řeší se většinou numericky. Analytické řešení je známo jen pro jednoduchá uspořádání pole, nicméně je důležité pro základní orientaci v problematice.

Za předpoklu šíření harmonické vlny a otočení souřadné soustavy tak, aby se vlna šířila ve směru osy z se zjednoduší původně parciální diferenciální rovnice na rovnici obyčejnou:

.

Tato rovnice má pro fázor intenzity elektrického pole řešení

.

Řešení popisuje dvě vlny, z nichž jedna se šíří ve směru osy , druhá v protisměru. a jsou fázory postupné a zpětné vlny v počátku ().

Pro vlnu postupující ve směru osy tedy platí

.

Konstanta šíření

Označí-li se reálná a imaginární část konstanty šíření k = (α+jβ), lze dále psát

.

Tento vztah ukazuje fyzikální význam konstant a . První z nich udává, jak rychle se vlna tlumí, druhá udává rychlost změny fáze vlny ve směru šíření. Rozměr obou konstant je 1/m. Pro okamžitou hodnotu lze pak psát

, nebo také

,

kde je amplituda vlny v počátku souřadnic a fáze vlny v čase tamtéž. Vyjádření pomocí funkce sinus se častěji používá v české literatuře, zahraniční díla obvykle preferují kosinus.

Určení z vlastností prostředí

Reálnou i imaginární část konstanty šíření je možné určit výpočtem: